Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study

نویسندگان

  • Maria-Argyro Karageorgou
  • Sanja Vranješ-Djurić
  • Magdalena Radović
  • Anna Lyberopoulou
  • Bratislav Antić
  • Maritina Rouchota
  • Maria Gazouli
  • George Loudos
  • Stavros Xanthopoulos
  • Zili Sideratou
  • Dimosthenis Stamopoulos
  • Penelope Bouziotis
  • Charalampos Tsoukalas
چکیده

The aim of this study was to develop a dual-modality PET/MR imaging probe by radiolabeling iron oxide magnetic nanoparticles (IONPs), surface functionalized with water soluble stabilizer 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), with the positron emitter Gallium-68. Magnetite nanoparticles (Fe3O4 MNPs) were synthesized via coprecipitation method and were stabilized with DPD. The Fe3O4-DPD MNPs were characterized based on their structure, morphology, size, surface charge, and magnetic properties. In vitro cytotoxicity studies showed reduced toxicity in normal cells, compared to cancer cells. Fe3O4-DPD MNPs were successfully labeled with Gallium-68 at high radiochemical purity (>91%) and their stability in human serum and in PBS was demonstrated, along with their further characterization on size and magnetic properties. The ex vivo biodistribution studies in normal Swiss mice showed high uptake in the liver followed by spleen. The acquired PET images were in accordance with the ex vivo biodistribution results. Our findings indicate that 68Ga-Fe3O4-DPD MNPs could serve as an important diagnostic tool for biomedical imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

Effect of iron oxide nanoparticles coating type on the relationship between nanoparticles concentration and signal intensity in inver-sion recovery T1-weighted MRI

  Background: Ultrasmallsuperparamagnetic iron oxide (USPIO) nanoparticles are used as blood pool contrast agent for magnetic resonance angiography and perfusion imaging. Our aim in this study was to investigate the effect of the two coating types of iron oxide nanoparticles on the relationship between nanoparticles concentration and signal intensity (SI) in T1-weighted MR images.   Methods : D...

متن کامل

Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging.

Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging pr...

متن کامل

Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions.

The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studie...

متن کامل

PET/MR and SPECT/MR multimodal imaging constructs: Direct radiolabelling of silica shell iron oxide nanorods for use in liver imaging and potential for hyperthermia therapy

University of Hull, UK Superparamagnetic iron oxide nanoparticles (SPIONs) are used as T2 magnetic resonance (MR) contrast agents. Nanorods (NRs) offer an interesting alternative to the more widely used nanospheres as they have shown to offer enhanced T2 relaxivities. The combination of MRI with nuclear imaging modalities such as positron emission tomography (PET) or single photon emission comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017